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Figure 4.  QSAR Models for Predicting fu

• Figure 2 shows the scheme of an IVIVE workflow we built using 
Konstanz Information Miner (KNIME). The workflow incorporates:

• A one-compartment population-based PK (P-PK) model (Figure 
3A) that incorporates Monte Carlo simulation to cover physical 
variability across individuals (Wetmore et al. 2012)

• A generalized three-compartment physiologically based 
pharmacokinetic (PBPK) model (Figure 3B; ongoing work) 

Both models predict a daily EAD that would lead to a blood 
concentration equivalent to the effective concentration from an in vitro 
assay.

• Required workflow inputs include:

‒ In vitro activity, which can be expressed as lowest effective 
concentration (LEC), half-maximal activity concentration (AC50), 
activity concentration at cutoff (ACC), or other concentration metric

‒ PK parameters, including fraction of chemical unbound to protein 
(fu), intrinsic clearance, renal clearance for the P-PK model, and 
partition coefficients (PCs) between plasma and gut, kidney, and 
liver for the generalized PBPK model

• The workflow output is an EAD value, which can be compared to 
user-provided in vivo lowest effective levels (LELs) or human 
exposure values.

• The workflow provides values for both EAD_Adj, the daily equivalent 
dose that results in free chemical concentrations in the blood 
equivalent to corresponding ACCs, and EAD_Total, the daily equivalent 
dose that results in total chemical concentrations in the blood 
equivalent to corresponding ACCs.
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• In vitro high-throughput screening (HTS) assays can accelerate 
identification of potentially toxic chemicals. However, before in vitro 
HTS assays can be used in risk assessment, the ability of in vitro 
activity to predict in vivo dose-response relationships needs to be 
evaluated.

• In vitro to in vivo extrapolation (IVIVE) links in vitro assay results to in 
vivo effects by estimating the daily in vivo equivalent administered 
dose (EAD) expected to produce a plasma or tissue concentration 
equivalent to an in vitro effective concentration (Figure 1).

• Proprietary software has typically been used for predicting 
pharmacokinetic (PK) parameters and PK modeling. However,
open-source software may be better suited for regulatory applications 
due to increased transparency.

• To facilitate IVIVE analysis with open-source tools, we developed an 
IVIVE workflow incorporating  transparent quantitative structure-activity 
relationships (QSARs) to parameterize PK models of varying 
complexity.

Introduction

• We built QSAR models to predict input PK parameters: fu, Henry’s law 
constant (HLC), and PCs between plasma and gut, kidney, and liver.

‒ HLC is the proportionality factor of Henry’s law, which states 
that the amount of dissolved gas is proportional to its partial 
pressures in the gas phase. HLC is used to calculate water:air
partition coefficient. 

• Binary molecular fingerprints were generated from the PaDEL
program (Yap et al. 2011). A genetic algorithm was employed to select 
the most information-rich subset of fingerprint bits. Two machine 
learning approaches, multiple linear regression and support vector 
regression, were used to create the QSAR models.

• Experimental datasets were curated for each parameter, ranging from 
69 -1808 chemicals. The models were trained on 75-80% of the data, 
and 20-25% of the chemicals were used as external test sets.

• The fu and HLC QSAR models were used in combination with an 
open-source logP model, which predicts the ratio of the concentration 
between water and octanol (Zang et al. 2017), to predict intrinsic 
clearance based on a published quantitative property-property 
relationship (QPPR) model (Kirman et al. 2015).

• Figures 4-6 show that our models accurately predicted PK 
parameters (R2 ranged from 0.79 to 0.86 between the predicted and 
experimental values for the external test sets). Where available, we 
compared performance of our models to that of ADMET Predictor 
software (Simulations Plus, Inc.), a proprietary software that uses 
QSAR models to predict biochemical, biophysical, and 
pharmacokinetic properties. Our models consistently performed 
better. 
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Development of Open-source IVIVE 
Workflows

Figure 3.  Structure of Pharmacokinetic 
Models

Figure 1. A Reverse Pharmacokinetic 
Model for In Vitro to In Vivo Extrapolation
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Figure 2. Scheme of IVIVE Workflow 

To get announcements of NICEATM activities, visit the NIH mailing list page 
for NICEATM News at https://list.nih.gov/cgi-bin/wa.exe?SUBED1=niceatm-
l&A=1 and click “Subscribe.”

Development of QSAR Models to Predict 
Input PK Parameters

Figure 6.  QSAR Models for Predicting Tissue 
to Plasma Partition Coefficients

Figures 6A-C compare predicted 
values from NICEATM models 
and/or ADMET Predictor models to 
experimental measurements for 
tissue to plasma partition 
coefficients.
A: PLiver; B: PKidney; C: PGut. 
For PGut, only NICEATM model 
results are presented, as an 
analogous prediction was not 
available from ADMET Predictor.

• Our open-source, ready-to-use workflows provide a transparent and easily 
accessible approach for IVIVE analysis. They can be used to study relevant toxicity 
potential for thousands of chemicals lacking in vivo data, expediting the safety 
assessment process.

• Predictions of input parameters for PK or PBPK models generated by our QSAR 
models correlated well with measured data, and our models generated better 
predictions than proprietary software for all the parameters. 

• When evaluating estrogenic activities, the range of EAD estimates produced by the 
workflow incorporating the P-PK model correlated well with the range of in vivo 
uterotrophic LELs for the majority of chemicals tested. This result suggests that this 
IVIVE approach provides valid estimates of in vivo estrogenic activity from in vitro ER 
pathway assays.

• Ongoing work is focused on developing generalized PBPK models that incorporate 
other metabolic pathways, such as glucoronidation. Such models will be included in 
future versions of the KNIME workflow to improve prediction accuracy for phenolic 
compounds, for example.

Discussion and Conclusion
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Figure 8.  IVIVE Analysis (P-PK model): ER 
Pathway Assays Compared to Uterotrophic LELs 

Figure 8 compares estimated EAD_Adj (mg/kg/day; red boxplots) and EAD_Total (mg/kg/day; green 
boxplots) predicted from ToxCast ER pathway assays using our IVIVE workflow to lowest, median, 
and maximum in vivo LELs (mg/kg/day; blue symbols and dashed lines) from injection uterotrophic
studies.

Figure 5.  QSAR Models for Predicting 
Henry’s Law Constant   

Figure 7.  KNIME Workflow 
Incorporating a P-PK Model

The KNIME workflow uses five modules: two input modules, one modeling 
module containing the P-PK model, and two output modules. The user executes 
each module by clicking the module tab. The bar under each module tab shows 
the execution status. 

• We used the KNIME workflow incorporating a one-compartment 
P-PK model (Figure 7) to carry out IVIVE analyses on 32 
potential estrogen receptor (ER) agonists.

− Model parameters:

o Predicted values for fu, logP, and HLC from our 
open-source QSAR models were used to calculate 
intrinsic clearance for each chemical.

o In vitro ACC values from HTS assays targeted to each 
step of the ER agonist pathway were obtained from the 
ToxCast October 2015 release (Judson et al. 2015).

o In vivo LELs from guideline-like injection uterotrophic
studies were obtained from a published curated database 
(Kleinstreuer et al. 2016).

− Workflow output:

o EAD_Adj, the daily equivalent dose that results in free 
chemical concentrations in the blood equivalent to ER 
pathway ACCs

o EAD_Total, the daily equivalent dose that results in total 
chemical concentrations in the blood equivalent to ER 
pathway ACCs   

• Figure 8 shows that EAD_Adj (red boxplot) predicted in vivo 
uterotrophic LELs more accurately, while EAD_Total (green 
boxplot) provided more conservative estimates of uterotrophic
LELs. The range of EAD_Adj estimates overlapped the range of 
LELs in injection uterotrophic studies for 26 of 32 chemicals.

Application of the Workflow  

BW, body weight; CL, clearance; Css, total steady-state plasma concentration; GFR, 
glomerular filtration rate; I.V., intravenous administration; MW, molecular weight; Q, 
blood flow rate
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